c |
<flask.g of 'ckan.config.middleware.flask_app'> |
g |
<flask.g of 'ckan.config.middleware.flask_app'> |
h |
{'redirect_to': <function redirect_to at 0x7f0d1b98b1e0>, 'url': <function url at 0x7f0d1b98b2f0>, 'get_site_protocol_and_host': <function get_site_protocol_and_host at 0x7f0d1b98b268>, 'url_for': <function url_for at 0x7f0d1b98b488>, 'url_for_static': <function url_for_static at 0x7f0d1b98b620>, 'url_for_static_or_external': <function url_for_static_or_external at 0x7f0d1b98b6a8>, 'is_url': <function is_url at 0x7f0d1b98b730>, 'url_is_local': <function url_is_local at 0x7f0d1b98b840>, 'full_current_url': <function full_current_url at 0x7f0d1b98b8c8>, 'current_url': <function current_url at 0x7f0d1b98b950>, 'lang': <function lang at 0x7f0d1b98b9d8>, 'ckan_version': <function ckan_version at 0x7f0d1b98ba60>, 'lang_native_name': <function lang_native_name at 0x7f0d1b98bae8>, 'is_rtl_language': <function is_rtl_language at 0x7f0d1b98bb70>, 'get_rtl_theme': <function get_rtl_theme at 0x7f0d1b98bbf8>, 'get_rtl_css': <function get_rtl_css at 0x7f0d1b98bc80>, 'flash_notice': <function flash_notice at 0x7f0d1b98bd08>, 'flash_error': <function flash_error at 0x7f0d1b98d1e0>, 'flash_success': <function flash_success at 0x7f0d1b98d268>, 'are_there_flash_messages': <function are_there_flash_messages at 0x7f0d1b98d2f0>, 'link_to': <function link_to at 0x7f0d1b98d730>, 'file': <function file at 0x7f0d1b98d7b8>, 'submit': <function submit at 0x7f0d1b98d840>, 'nav_link': <function nav_link at 0x7f0d1b98d8c8>, 'wrapped': <function deprecated.<locals>.decorator.<locals>.wrapped at 0x7f0d1b98e7b8>, 'build_nav_main': <function build_nav_main at 0x7f0d1b98da60>, 'build_nav_icon': <function build_nav_icon at 0x7f0d1b98de18>, 'build_nav': <function build_nav at 0x7f0d1b98dea0>, 'build_extra_admin_nav': <function build_extra_admin_nav at 0x7f0d1b98e048>, 'default_group_type': <function default_group_type at 0x7f0d1b98e158>, 'get_facet_items_dict': <function get_facet_items_dict at 0x7f0d1b98e1e0>, 'has_more_facets': <function has_more_facets at 0x7f0d1b98e268>, 'unselected_facet_items': <function unselected_facet_items at 0x7f0d1b98e2f0>, 'get_param_int': <function get_param_int at 0x7f0d1b98e378>, 'sorted_extras': <function sorted_extras at 0x7f0d1b98e598>, 'check_access': <function check_access at 0x7f0d1b98e620>, 'linked_user': <function linked_user at 0x7f0d1b98e6a8>, 'group_name_to_title': <function group_name_to_title at 0x7f0d1b98e840>, 'truncate': <function truncate at 0x7f0d1b98e8c8>, 'markdown_extract': <function markdown_extract at 0x7f0d1b98e950>, 'icon_url': <function icon_url at 0x7f0d1b98e9d8>, 'icon_html': <function icon_html at 0x7f0d1b98ea60>, 'icon': <function icon at 0x7f0d1b98eae8>, 'resource_icon': <function resource_icon at 0x7f0d1b98eb70>, 'format_icon': <function format_icon at 0x7f0d1b98ebf8>, 'dict_list_reduce': <function dict_list_reduce at 0x7f0d1b98ec80>, 'gravatar': <function gravatar at 0x7f0d1b98ed08>, 'sanitize_url': <function sanitize_url at 0x7f0d1b98ed90>, 'user_image': <function user_image at 0x7f0d1b98ee18>, 'pager_url': <function pager_url at 0x7f0d1b98eea0>, 'get_page_number': <function get_page_number at 0x7f0d1b98ef28>, 'get_display_timezone': <function get_display_timezone at 0x7f0d1b98f048>, 'render_datetime': <function render_datetime at 0x7f0d1b98f0d0>, 'date_str_to_datetime': <function date_str_to_datetime at 0x7f0d1b98f158>, 'parse_rfc_2822_date': <function parse_rfc_2822_date at 0x7f0d1b98f1e0>, 'time_ago_from_timestamp': <function time_ago_from_timestamp at 0x7f0d1b98f268>, 'button_attr': <function button_attr at 0x7f0d1b98f510>, 'dataset_display_name': <function dataset_display_name at 0x7f0d1b98f598>, 'dataset_link': <function dataset_link at 0x7f0d1b98f620>, 'resource_display_name': <function resource_display_name at 0x7f0d1b98f6a8>, 'resource_link': <function resource_link at 0x7f0d1b98f730>, 'tag_link': <function tag_link at 0x7f0d1b98f7b8>, 'group_link': <function group_link at 0x7f0d1b98f840>, 'organization_link': <function organization_link at 0x7f0d1b98f8c8>, 'dump_json': <function dump_json at 0x7f0d1b98f950>, 'auto_log_message': <function auto_log_message at 0x7f0d1b98f9d8>, 'activity_div': <function activity_div at 0x7f0d1b98fa60>, 'snippet': <function snippet at 0x7f0d1b98fae8>, 'convert_to_dict': <function convert_to_dict at 0x7f0d1b98fb70>, 'follow_button': <function follow_button at 0x7f0d1b98fbf8>, 'follow_count': <function follow_count at 0x7f0d1b98fc80>, 'add_url_param': <function add_url_param at 0x7f0d1b98fd90>, 'remove_url_param': <function remove_url_param at 0x7f0d1b98fe18>, 'include_resource': <function include_resource at 0x7f0d1b98fea0>, 'urls_for_resource': <function urls_for_resource at 0x7f0d1b98ff28>, 'debug_inspect': <function debug_inspect at 0x7f0d1b990048>, 'popular': <function popular at 0x7f0d1b9900d0>, 'groups_available': <function groups_available at 0x7f0d1b990158>, 'organizations_available': <function organizations_available at 0x7f0d1b9901e0>, 'roles_translated': <function roles_translated at 0x7f0d1b990268>, 'user_in_org_or_group': <function user_in_org_or_group at 0x7f0d1b9902f0>, 'dashboard_activity_stream': <function dashboard_activity_stream at 0x7f0d1b990378>, 'recently_changed_packages_activity_stream': <function recently_changed_packages_activity_stream at 0x7f0d1b990400>, 'escape_js': <function escape_js at 0x7f0d1b990488>, 'get_pkg_dict_extra': <function get_pkg_dict_extra at 0x7f0d1b990510>, 'get_request_param': <function get_request_param at 0x7f0d1b990598>, 'html_auto_link': <function html_auto_link at 0x7f0d1b990620>, 'render_markdown': <function render_markdown at 0x7f0d1b9906a8>, 'format_resource_items': <function format_resource_items at 0x7f0d1b990730>, 'resource_preview': <function resource_preview at 0x7f0d1b9907b8>, 'get_allowed_view_types': <function get_allowed_view_types at 0x7f0d1b990840>, 'rendered_resource_view': <function rendered_resource_view at 0x7f0d1b9908c8>, 'view_resource_url': <bound method ResourceProxy.view_resource_url of <Plugin ResourceProxy 'resource_proxy'>>, 'resource_view_is_filterable': <function resource_view_is_filterable at 0x7f0d1b9909d8>, 'resource_view_get_fields': <function resource_view_get_fields at 0x7f0d1b990a60>, 'resource_view_is_iframed': <function resource_view_is_iframed at 0x7f0d1b990ae8>, 'resource_view_icon': <function resource_view_icon at 0x7f0d1b990b70>, 'resource_view_display_preview': <function resource_view_display_preview at 0x7f0d1b990bf8>, 'resource_view_full_page': <function resource_view_full_page at 0x7f0d1b990c80>, 'remove_linebreaks': <function remove_linebreaks at 0x7f0d1b990d08>, 'list_dict_filter': <function list_dict_filter at 0x7f0d1b990d90>, 'SI_number_span': <function SI_number_span at 0x7f0d1b990e18>, 'new_activities': <function new_activities at 0x7f0d1b990ea0>, 'uploads_enabled': <function uploads_enabled at 0x7f0d1b990f28>, 'get_featured_organizations': <function get_featured_organizations at 0x7f0d1b991048>, 'get_featured_groups': <function get_featured_groups at 0x7f0d1b9910d0>, 'featured_group_org': <function featured_group_org at 0x7f0d1b991158>, 'get_site_statistics': <function get_site_statistics at 0x7f0d1b9911e0>, 'resource_formats': <function resource_formats at 0x7f0d1b991268>, 'unified_resource_format': <function unified_resource_format at 0x7f0d1b9912f0>, 'check_config_permission': <function check_config_permission at 0x7f0d1b991378>, 'get_organization': <function get_organization at 0x7f0d1b991400>, 'license_options': <function license_options at 0x7f0d1b991488>, 'get_translated': <function get_translated at 0x7f0d1b991510>, 'facets': <function facets at 0x7f0d1b991598>, 'mail_to': <function mail_to at 0x7f0d1b991620>, 'radio': <function radio at 0x7f0d1b9916a8>, 'clean_html': <function clean_html at 0x7f0d1b991730>, 'flash': <ckan.lib.helpers._Flash object at 0x7f0d1c9ff828>, 'localised_number': <function localised_number at 0x7f0d1ca5b620>, 'localised_SI_number': <function localised_SI_number at 0x7f0d1ca5b730>, 'localised_nice_date': <function localised_nice_date at 0x7f0d1ca5b510>, 'localised_filesize': <function localised_filesize at 0x7f0d1ca5b6a8>, 'get_available_locales': <function get_available_locales at 0x7f0d1de36158>, 'get_locales_dict': <function get_locales_dict at 0x7f0d1de360d0>, 'literal': <class 'ckan.lib.helpers.literal'>, 'asbool': <function asbool at 0x7f0d1e2eb950>, 'urlencode': <function urlencode at 0x7f0d1f4acc80>, 'include_asset': <function include_asset at 0x7f0d1b986c80>, 'render_assets': <function render_assets at 0x7f0d1b986d90>, 'sanitize_id': <function sanitize_id at 0x7f0d1b991840>, 'compare_pkg_dicts': <function compare_pkg_dicts at 0x7f0d1b9918c8>, 'activity_list_select': <function activity_list_select at 0x7f0d1b991950>, 'get_collaborators': <function get_collaborators at 0x7f0d1b9919d8>, 'can_update_owner_org': <function can_update_owner_org at 0x7f0d1b991a60>, 'check_ckan_version': <function check_ckan_version at 0x7f0d1b991ae8>, 'csrf_input': <function csrf_input at 0x7f0d1b991b70>, 'related_resources': <function RelatedController.save_relationships at 0x7f0d18e189d8>, 'rdkit_visuals': <function RdkitVisualsController.display_image at 0x7f0d18e18488>, 'molecule_data': <function RdkitVisualsController.molecule_data at 0x7f0d18e18510>, 'alternate_names': <function RdkitVisualsController.alternames at 0x7f0d18e18598>, 'related_values': <function RdkitVisualsController.related_resources at 0x7f0d18e18620>, 'package_list_for_source': <function package_list_for_source at 0x7f0d08e1f7b8>, 'package_count_for_source': <function package_count_for_source at 0x7f0d08e1f598>, 'harvesters_info': <function harvesters_info at 0x7f0d08e1f620>, 'harvester_types': <function harvester_types at 0x7f0d08e1f510>, 'harvest_frequencies': <function harvest_frequencies at 0x7f0d08e1f400>, 'link_for_harvest_object': <function link_for_harvest_object at 0x7f0d08e1f488>, 'harvest_source_extra_fields': <function harvest_source_extra_fields at 0x7f0d08e1f2f0>, 'get_harvest_source': <function get_harvest_source at 0x7f0d08e1f378>, 'structured_data': <function structured_data at 0x7f0d192112f0>, 'relationship_get_entity_list': <function get_entity_list at 0x7f0d18ea20d0>, 'relationship_get_current_relations_list': <function get_current_relations_list at 0x7f0d18ea2400>, 'relationship_get_dataset_dict_from_dataset_id': <function get_dataset_dict_from_dataset_id at 0x7f0d18ea2378>, 'relationship_get_selected_json': <function get_selected_json at 0x7f0d18ea2950>, 'relationship_get_molecule_search_facets': <function get_molecule_search_facets at 0x7f0d18ea2ea0>, 'relationship_get_dataset_facets_for_molecule_search': <function get_dataset_facets_for_molecule_search at 0x7f0d18ea2f28>, 'scheming_language_text': <function scheming_language_text at 0x7f0d18f31d08>, 'scheming_field_choices': <function scheming_field_choices at 0x7f0d19014158>, 'scheming_choices_label': <function scheming_choices_label at 0x7f0d190141e0>, 'scheming_datastore_choices': <function scheming_datastore_choices at 0x7f0d19014268>, 'scheming_field_required': <function scheming_field_required at 0x7f0d190142f0>, 'scheming_dataset_schemas': <function scheming_dataset_schemas at 0x7f0d19014378>, 'scheming_get_presets': <function scheming_get_presets at 0x7f0d19014400>, 'scheming_get_preset': <function scheming_get_preset at 0x7f0d19014488>, 'scheming_get_dataset_schema': <function scheming_get_dataset_schema at 0x7f0d19014510>, 'scheming_get_dataset_form_pages': <function scheming_get_dataset_form_pages at 0x7f0d19014598>, 'scheming_group_schemas': <function scheming_group_schemas at 0x7f0d19014620>, 'scheming_get_group_schema': <function scheming_get_group_schema at 0x7f0d190146a8>, 'scheming_organization_schemas': <function scheming_organization_schemas at 0x7f0d19014730>, 'scheming_get_organization_schema': <function scheming_get_organization_schema at 0x7f0d190147b8>, 'scheming_get_schema': <function scheming_get_schema at 0x7f0d19014840>, 'scheming_field_by_name': <function scheming_field_by_name at 0x7f0d190148c8>, 'scheming_datetime_to_utc': <function scheming_datetime_to_utc at 0x7f0d190149d8>, 'scheming_datetime_to_tz': <function scheming_datetime_to_tz at 0x7f0d19014a60>, 'scheming_get_timezones': <function scheming_get_timezones at 0x7f0d19014ae8>, 'scheming_display_json_value': <function scheming_display_json_value at 0x7f0d19014b70>, 'scheming_render_from_string': <function scheming_render_from_string at 0x7f0d19014bf8>, 'scheming_flatten_subfield': <function scheming_flatten_subfield at 0x7f0d19014c80>, 'scheming_link_ts': <function scheming_link_ts at 0x7f0d19014d08>, 'scheming_get_source_unichem': <function scheming_get_source_unichem at 0x7f0d19014d90>, 'footer': <function FooterController.display_search_mol_image at 0x7f0d18e7b620>, 'searchbar': <function FooterController.searchbar at 0x7f0d18e7bea0>, 'mol_package_list': <function FooterController.mol_dataset_list at 0x7f0d18e7bf28>, 'package_list_for_every_inchi': <function FooterController.package_show_dict at 0x7f0d18e7c048>, 'get_molecule_data': <function FooterController.get_molecule_data at 0x7f0d18e7be18>, 'package_list': <function FooterPlugin.molecule_view_search at 0x7f0d18e7c8c8>, 'search_autocomplete_enable_default_implementation': <function enable_default_implementation at 0x7f0d18da0d90>, 'advanced_search_form_config': <function form_config at 0x7f0d18d986a8>, 'advanced_search_form_config_image': <function form_config_image at 0x7f0d18da0378>, 'spellcheck_did_you_mean': <function spellcheck_did_you_mean at 0x7f0d18d98ae8>, 'composite_search_get_prefix': <function get_prefix at 0x7f0d18ec5b70>, 'helper_available': <function helper_available at 0x7f0d19211268>, 'dcat_get_endpoint': <function get_endpoint at 0x7f0d19211ae8>, 'dcat_endpoints_enabled': <function endpoints_enabled at 0x7f0d19211a60>, 'repositories_dataset_present_count': <function repositories_dataset_present_count at 0x7f0d192a06a8>, 'get_measurement_count': <function get_measurement_count at 0x7f0d192a0730>} |
packages |
[{'author': 'Zaverkin, Viktor, Holzmüller, David, Bonfirraro, Luca, Kästner, Johannes', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3299', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:10.521291', 'metadata_modified': '2023-05-08T19:14:10.521296', 'name': 'doi-10-18419-darus-3299', 'notes': 'Pre-trained and fine-tuned ANI models using the Gaussian Moments Neural Network (GM-NN) approach. Code for GM-NN implemented within the Tensorflow framework, including the respective documentation and tutorials, can be found <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>. \n\nThe data represents TensorFlow v2 checkpoints and stores the metadata for the checkpoint and parameters for the model. Checkpoints can be read by the source code provided <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>. A detailed description for reproducing the results and employing pre-trained and fine-tuned models during a simulation is provided <a href="https://zaverkin_v.gitlab.io/gmnn/tutorials/transfer_learning.html">in the GM-NN Documentation</a>.', 'num_resources': 1, 'num_tags': 11, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Zaverkin, Viktor'}, {'key': 'creator', 'value': 'Zaverkin, Viktor'}, {'key': 'date', 'value': '2023-02-20T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3299'}, {'key': 'metadata_modified', 'value': '2023-02-21T01:00:06'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '1e3d9f3c-6d7b-42df-904c-5fd345dece78'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:10.537321', 'format': 'HTML', 'hash': '', 'id': 'b0bddd32-f061-410a-bc09-9bac28fb08c4', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:10.507649', 'mimetype': None, 'mimetype_inner': None, 'name': 'Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials', 'package_id': 'doi-10-18419-darus-3299', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3299', 'url_type': None}], 'tags': [{'display_name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'id': '0559f28e-5e33-426d-a5e8-5e615e15a542', 'name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'atomistic-machine-learning', 'id': '2240e87f-ab38-4e03-b8ea-1e006b9268d3', 'name': 'atomistic-machine-learning', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computer-and-information-science', 'id': '75b28b6d-af69-4c24-9c9e-451d429aad9b', 'name': 'computer-and-information-science', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'coupled-cluster-cc-ansatz', 'id': '6a28d72d-d650-42ca-9425-259d86fd29a3', 'name': 'coupled-cluster-cc-ansatz', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'density-functional-theory-dft', 'id': '4c3b55d5-fe56-4a5c-92c9-bb32e2f961aa', 'name': 'density-functional-theory-dft', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moment-neural-network-gm-nn', 'id': 'cfb65332-2cf0-4494-a29d-39bb64315076', 'name': 'gaussian-moment-neural-network-gm-nn', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moments', 'id': 'a6446777-ff08-4690-b980-92eacae73188', 'name': 'gaussian-moments', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'potential-energy-surface', 'id': 'a312c19b-5ff6-44a5-ab5b-b2e6c6e29690', 'name': 'potential-energy-surface', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transfer-learning', 'id': '442d604b-226d-4279-a05d-dcdd99e1ec7c', 'name': 'transfer-learning', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Zaverkin, Viktor, Holzmüller, David, Steinwart, Ingo, Kästner, Johannes', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-2136', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:13:34.100886', 'metadata_modified': '2023-05-08T19:13:34.100892', 'name': 'doi-10-18419-darus-2136', 'notes': 'Code and documentation for the improved Gaussian Moments Neural Network (GM-NN). An updated version can be found <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>', 'num_resources': 1, 'num_tags': 8, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Holzmüller, David'}, {'key': 'creator', 'value': 'Zaverkin, Viktor'}, {'key': 'date', 'value': '2021-10-15T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-2136'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:04'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '6e85d9e8-b7d2-4ae1-a2d5-ea6cc067eaaf'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'groups': [{'description': '', 'display_name': 'openaire_data', 'id': 'openaire_data', 'image_display_url': '', 'name': 'openaire_data', 'title': 'openaire_data'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:13:34.115103', 'format': 'HTML', 'hash': '', 'id': '220d0422-e9e1-4c76-9031-9c638bd7dfd4', 'last_modified': None, 'metadata_modified': '2023-05-08T19:13:34.085289', 'mimetype': None, 'mimetype_inner': None, 'name': 'Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments', 'package_id': 'doi-10-18419-darus-2136', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-2136', 'url_type': None}], 'tags': [{'display_name': 'atomistic-machine-learning', 'id': '2240e87f-ab38-4e03-b8ea-1e006b9268d3', 'name': 'atomistic-machine-learning', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computational-chemistry', 'id': '3d02e55b-bc6b-4145-8878-222fe3513717', 'name': 'computational-chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computer-and-information-science', 'id': '75b28b6d-af69-4c24-9c9e-451d429aad9b', 'name': 'computer-and-information-science', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moments', 'id': 'a6446777-ff08-4690-b980-92eacae73188', 'name': 'gaussian-moments', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gm-nn', 'id': 'd029b570-a34c-4afd-af6b-330fd83f3393', 'name': 'gm-nn', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'potential-energy-surface', 'id': 'a312c19b-5ff6-44a5-ab5b-b2e6c6e29690', 'name': 'potential-energy-surface', 'state': 'active', 'vocabulary_id': None}], 'relationships_as_subject': [], 'relationships_as_object': []}] |
request |
<Request 'https://ckanchem21.service.tib.eu/dataset/?tags=chemistry&tags=potential-energy-surface&_tags_limit=0' [GET]> |
session |
{'_domain': None, '_path': '/', '_accessed_time': 1750615201.1174638, '_creation_time': 1750615201.1174638, 'initial_search_params': {'facet.field': ['organization', 'measurement_technique', 'tags', 'license_id'], 'fq': ['tags:"chemistry" tags:"potential-energy-surface" +dataset_type:dataset -dataset_type:harvest', '+site_id:"default"', '+state:active', '+permission_labels:("public")'], 'q': '*:*', 'rows': 21, 'start': 0, 'df': 'text', 'mm': '5<-4 9<-90%', 'defType': 'edismax', 'bf': '0', 'qf': 'title^5 text', 'sort': 'score desc, metadata_modified desc', 'fl': 'id validated_data_dict', 'facet': 'true', 'facet.limit': '50', 'facet.mincount': 1, 'wt': 'json', 'tie': '0.1', 'q.op': 'AND', 'extras': {}}, 'search_results_final': {'count': 2, 'facets': {'organization': {'darus': 2}, 'measurement_technique': {}, 'tags': {'atomistic-machine-learning': 2, 'chemistry': 2, 'computer-and-information-science': 2, 'gaussian-moments': 2, 'physics': 2, 'potential-energy-surface': 2, 'accurate-neural-network-engine-for-molecular-energies-ani': 1, 'computational-chemistry': 1, 'coupled-cluster-cc-ansatz': 1, 'density-functional-theory-dft': 1, 'gaussian-moment-neural-network-gm-nn': 1, 'gm-nn': 1, 'transfer-learning': 1}, 'license_id': {'': 2}}, 'results': [{'author': 'Zaverkin, Viktor, Holzmüller, David, Bonfirraro, Luca, Kästner, Johannes', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3299', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:10.521291', 'metadata_modified': '2023-05-08T19:14:10.521296', 'name': 'doi-10-18419-darus-3299', 'notes': 'Pre-trained and fine-tuned ANI models using the Gaussian Moments Neural Network (GM-NN) approach. Code for GM-NN implemented within the Tensorflow framework, including the respective documentation and tutorials, can be found <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>. \n\nThe data represents TensorFlow v2 checkpoints and stores the metadata for the checkpoint and parameters for the model. Checkpoints can be read by the source code provided <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>. A detailed description for reproducing the results and employing pre-trained and fine-tuned models during a simulation is provided <a href="https://zaverkin_v.gitlab.io/gmnn/tutorials/transfer_learning.html">in the GM-NN Documentation</a>.', 'num_resources': 1, 'num_tags': 11, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Zaverkin, Viktor'}, {'key': 'creator', 'value': 'Zaverkin, Viktor'}, {'key': 'date', 'value': '2023-02-20T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3299'}, {'key': 'metadata_modified', 'value': '2023-02-21T01:00:06'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '1e3d9f3c-6d7b-42df-904c-5fd345dece78'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:10.537321', 'format': 'HTML', 'hash': '', 'id': 'b0bddd32-f061-410a-bc09-9bac28fb08c4', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:10.507649', 'mimetype': None, 'mimetype_inner': None, 'name': 'Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials', 'package_id': 'doi-10-18419-darus-3299', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3299', 'url_type': None}], 'tags': [{'display_name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'id': '0559f28e-5e33-426d-a5e8-5e615e15a542', 'name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'atomistic-machine-learning', 'id': '2240e87f-ab38-4e03-b8ea-1e006b9268d3', 'name': 'atomistic-machine-learning', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computer-and-information-science', 'id': '75b28b6d-af69-4c24-9c9e-451d429aad9b', 'name': 'computer-and-information-science', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'coupled-cluster-cc-ansatz', 'id': '6a28d72d-d650-42ca-9425-259d86fd29a3', 'name': 'coupled-cluster-cc-ansatz', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'density-functional-theory-dft', 'id': '4c3b55d5-fe56-4a5c-92c9-bb32e2f961aa', 'name': 'density-functional-theory-dft', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moment-neural-network-gm-nn', 'id': 'cfb65332-2cf0-4494-a29d-39bb64315076', 'name': 'gaussian-moment-neural-network-gm-nn', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moments', 'id': 'a6446777-ff08-4690-b980-92eacae73188', 'name': 'gaussian-moments', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'potential-energy-surface', 'id': 'a312c19b-5ff6-44a5-ab5b-b2e6c6e29690', 'name': 'potential-energy-surface', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transfer-learning', 'id': '442d604b-226d-4279-a05d-dcdd99e1ec7c', 'name': 'transfer-learning', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Zaverkin, Viktor, Holzmüller, David, Steinwart, Ingo, Kästner, Johannes', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-2136', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:13:34.100886', 'metadata_modified': '2023-05-08T19:13:34.100892', 'name': 'doi-10-18419-darus-2136', 'notes': 'Code and documentation for the improved Gaussian Moments Neural Network (GM-NN). An updated version can be found <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>', 'num_resources': 1, 'num_tags': 8, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Holzmüller, David'}, {'key': 'creator', 'value': 'Zaverkin, Viktor'}, {'key': 'date', 'value': '2021-10-15T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-2136'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:04'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '6e85d9e8-b7d2-4ae1-a2d5-ea6cc067eaaf'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'groups': [{'description': '', 'display_name': 'openaire_data', 'id': 'openaire_data', 'image_display_url': '', 'name': 'openaire_data', 'title': 'openaire_data'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:13:34.115103', 'format': 'HTML', 'hash': '', 'id': '220d0422-e9e1-4c76-9031-9c638bd7dfd4', 'last_modified': None, 'metadata_modified': '2023-05-08T19:13:34.085289', 'mimetype': None, 'mimetype_inner': None, 'name': 'Code for: Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments', 'package_id': 'doi-10-18419-darus-2136', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-2136', 'url_type': None}], 'tags': [{'display_name': 'atomistic-machine-learning', 'id': '2240e87f-ab38-4e03-b8ea-1e006b9268d3', 'name': 'atomistic-machine-learning', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computational-chemistry', 'id': '3d02e55b-bc6b-4145-8878-222fe3513717', 'name': 'computational-chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computer-and-information-science', 'id': '75b28b6d-af69-4c24-9c9e-451d429aad9b', 'name': 'computer-and-information-science', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moments', 'id': 'a6446777-ff08-4690-b980-92eacae73188', 'name': 'gaussian-moments', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gm-nn', 'id': 'd029b570-a34c-4afd-af6b-330fd83f3393', 'name': 'gm-nn', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'potential-energy-surface', 'id': 'a312c19b-5ff6-44a5-ab5b-b2e6c6e29690', 'name': 'potential-energy-surface', 'state': 'active', 'vocabulary_id': None}], 'relationships_as_subject': [], 'relationships_as_object': []}], 'sort': 'score desc, metadata_modified desc', 'search_facets': {'organization': {'title': 'organization', 'items': [{'name': 'darus', 'display_name': 'DaRUS', 'count': 2}]}, 'measurement_technique': {'title': 'measurement_technique', 'items': []}, 'tags': {'title': 'tags', 'items': [{'name': 'transfer-learning', 'display_name': 'transfer-learning', 'count': 1}, {'name': 'potential-energy-surface', 'display_name': 'potential-energy-surface', 'count': 2}, {'name': 'physics', 'display_name': 'physics', 'count': 2}, {'name': 'gm-nn', 'display_name': 'gm-nn', 'count': 1}, {'name': 'gaussian-moments', 'display_name': 'gaussian-moments', 'count': 2}, {'name': 'gaussian-moment-neural-network-gm-nn', 'display_name': 'gaussian-moment-neural-network-gm-nn', 'count': 1}, {'name': 'density-functional-theory-dft', 'display_name': 'density-functional-theory-dft', 'count': 1}, {'name': 'coupled-cluster-cc-ansatz', 'display_name': 'coupled-cluster-cc-ansatz', 'count': 1}, {'name': 'computer-and-information-science', 'display_name': 'computer-and-information-science', 'count': 2}, {'name': 'computational-chemistry', 'display_name': 'computational-chemistry', 'count': 1}, {'name': 'chemistry', 'display_name': 'chemistry', 'count': 2}, {'name': 'atomistic-machine-learning', 'display_name': 'atomistic-machine-learning', 'count': 2}, {'name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'display_name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'count': 1}]}, 'license_id': {'title': 'license_id', 'items': [{'name': '', 'display_name': '', 'count': 2}]}}}, 'search_params': None} |
ungettext |
<function ungettext at 0x7f0d1e2eb1e0> |