session |
{'_domain': None, '_path': '/', '_accessed_time': 1750612343.0863855, '_creation_time': 1750612343.0863855, 'initial_search_params': {'facet.field': ['organization', 'measurement_technique', 'tags', 'license_id'], 'fq': ['tags:"chemistry" tags:"physics" +dataset_type:dataset -dataset_type:harvest', '+site_id:"default"', '+state:active', '+permission_labels:("public")'], 'q': '*:*', 'rows': 21, 'start': 0, 'df': 'text', 'mm': '5<-4 9<-90%', 'defType': 'edismax', 'bf': '0', 'qf': 'title^5 text', 'sort': 'score desc, metadata_modified desc', 'fl': 'id validated_data_dict', 'facet': 'true', 'facet.limit': '50', 'facet.mincount': 1, 'wt': 'json', 'tie': '0.1', 'q.op': 'AND', 'extras': {}}, 'search_results_final': {'count': 42, 'facets': {'organization': {'darus': 36, 'radarchem': 6}, 'measurement_technique': {'{"CoSAXS beamline at the 3 GeV ring of the MAX-IV Laboratory (Lund, Sweden)","D11 SANS beamline at ILL (Grenoble, France)","Multi-angle DLS: ALV/CGS-3 Compact Goniometer System with an ALV/LSE 5004 Tau Digital Correlator","DHR-3 rheometer (TA instruments)","Static Light Scattering instrument (SLS-Systemtechnik GmbH)","Ubbelohde viscometer 0c (SI Analytics) and Lauda iVisc measuring stand",Instrument,Instrument,Instrument,Instrument,Instrument,Instrument}': 1, '{}': 1}, 'tags': {'chemistry': 42, 'physics': 42, 'engineering': 16, 'molecular-dynamics-simulation': 12, 'computer-and-information-science': 11, 'excess-properties': 10, 'fair': 10, 'fair-data-principles': 10, 'liquid-mixtures': 10, 'mathematical-sciences': 10, 'transferability-of-force-fields': 10, 'dataset': 6, 'gromacs': 6, 'thermoml': 6, 'sodium-chloride': 5, 'thermoml-file': 4, 'adsorption': 3, 'earth-and-environmental-sciences': 3, 'surfactants': 3, 'water': 3, 'x-ray-scattering': 3, 'atomistic-machine-learning': 2, 'computer-simulation': 2, 'experimental-data': 2, 'gaussian-moments': 2, 'hydrogel': 2, 'lyotropic-liquid-crystal': 2, 'microgels': 2, 'molecular-dynamics': 2, 'monte-carlo-method': 2, 'polyelectrolytes': 2, 'potential-energy-surface': 2, 'shape-memory-polymer': 2, 'sodium-sulfate': 2, 'vmd-visual-molecular-dynamics': 2, 'absorption': 1, 'accurate-neural-network-engine-for-molecular-energies-ani': 1, 'advection-reaction-diffusion': 1, 'animl': 1, 'chemical-structure': 1, 'colloidal-crystals': 1, 'computational-chemistry': 1, 'coupled-cluster-cc-ansatz': 1, 'covalent-organic-framework': 1, 'density-functional-theory': 1, 'density-functional-theory-dft': 1, 'desorption': 1, 'dft-optimised-coordinates': 1, 'diffusion': 1, 'droplet-interface-bilayers': 1}, 'license_id': {'': 36, 'CC BY 4.0 Deed': 2}}, 'results': [{'author': 'Petrunin, Alexander V. , Höfken, Tom, Schneider, Stefanie, Mota-Santiago, Pablo, Houston, Judith E. , Scotti, Andrea', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'doi': 'https://dx.doi.org/10.22000/gDDeJtniERRQmiOx', 'id': '10-22000-gddejtnierrqmiox', 'isopen': False, 'language': '{eng}', 'license_id': 'CC BY 4.0 Deed', 'license_title': 'Attribution 4.0 International', 'license_url': 'https://creativecommons.org/licenses/by/4.0/legalcode', 'maintainer': 'RWTH Aachen University', 'maintainer_email': None, 'measurement_technique': '{"CoSAXS beamline at the 3 GeV ring of the MAX-IV Laboratory (Lund, Sweden)","D11 SANS beamline at ILL (Grenoble, France)","Multi-angle DLS: ALV/CGS-3 Compact Goniometer System with an ALV/LSE 5004 Tau Digital Correlator","DHR-3 rheometer (TA instruments)","Static Light Scattering instrument (SLS-Systemtechnik GmbH)","Ubbelohde viscometer 0c (SI Analytics) and Lauda iVisc measuring stand",Instrument,Instrument,Instrument,Instrument,Instrument,Instrument}', 'metadata_created': '2025-01-29T14:06:55.354849', 'metadata_modified': '2025-01-29T14:06:55.354855', 'name': '10-22000-gddejtnierrqmiox', 'notes': 'Raw and processed data for: Dynamic and Static Light Scattering, Small-angle Neutron Scattering, Small-angle X-ray Scattering (for binary mixtures), Capillary Viscosimetry, Shear Rheology, Photographs of Sample vials. Molecular dynamics simulation: LAMMPS input and data files for regular and hollow microgels, raw data for biased umbrella sampling (distances) and processed data for concentrated binary mixtures (volumes).', 'num_resources': 1, 'num_tags': 8, 'organization': {'id': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'name': 'radarchem', 'title': 'Radar4Chem ', 'type': 'repository', 'description': 'RADAR4Chem helps you publish your chemistry research data as easily as possible - without neglecting convenience, data security or legal aspects. ', 'image_url': 'logo-radar4-final_logo-radar4chem.svg', 'created': '2022-10-05T10:26:27.358751', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'private': False, 'related_study': '[]', 'state': 'active', 'title': 'Dataset belonging to the publication: "Phase behavior of binary mixtures of hollow and regular microgels"', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Petrunin, Alexander V. '}, {'key': 'date', 'value': '2024-01-29T00:00:00'}, {'key': 'format', 'value': 'application/x-tar'}, {'key': 'identifier', 'value': 'https://dx.doi.org/10.22000/gDDeJtniERRQmiOx'}, {'key': 'metadata_modified', 'value': '2024-12-17T09:44:41'}, {'key': 'relation', 'value': '10.1039/D4SM00862F'}, {'key': 'rights', 'value': 'info:eu-repo/semantics/openAccess'}, {'key': 'set_spec', 'value': 'radar4chem'}, {'key': 'source', 'value': 'CoSAXS beamline at the 3 GeV ring of the MAX-IV Laboratory (Lund, Sweden)'}, {'key': 'harvest_object_id', 'value': 'a15d0a4c-f39c-41f4-a5cd-3dcb6c469ca0'}, {'key': 'harvest_source_id', 'value': 'b4d8923e-d80b-4540-92d2-af05fd4bd33e'}, {'key': 'harvest_source_title', 'value': 'radar dublin core'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2025-01-29T14:06:55.371118', 'format': 'TAR', 'hash': '', 'id': '14d1a046-dac6-4665-93c4-606cb386013c', 'last_modified': None, 'metadata_modified': '2025-01-29T14:06:55.342114', 'mimetype': None, 'mimetype_inner': None, 'name': 'Dataset belonging to the publication: "Phase behavior of binary mixtures of hollow and regular microgels"', 'package_id': '10-22000-gddejtnierrqmiox', 'position': 0, 'resource_type': 'application/x-tar', 'size': None, 'state': 'active', 'url': 'https://dx.doi.org/10.22000/gDDeJtniERRQmiOx', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'colloidal-crystals', 'id': '0103e0c0-92b5-48f5-917a-002937bcf5b4', 'name': 'colloidal-crystals', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dataset', 'id': 'd6be89fd-9eb9-45f6-a83d-b0ed19d64e64', 'name': 'dataset', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'hollow-microgels', 'id': '0728817d-472a-4ee4-ab58-a48b5eb831be', 'name': 'hollow-microgels', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'microgels', 'id': '97769a81-2fca-49f6-9d52-46b71c80228a', 'name': 'microgels', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'molecular-dynamics-simulation', 'id': '0040c50a-44c0-4113-b945-716272c88419', 'name': 'molecular-dynamics-simulation', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'scattering', 'id': '40fbf322-1d6d-4aea-a157-956248e81a94', 'name': 'scattering', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Schmidt, Maximilian Marcel, Laukkanen, Olli-Ville, Bochenek, Steffen, Schier, Walter Sebastian, Richtering, Walter', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'doi': 'https://dx.doi.org/10.22000/1923', 'id': '10-22000-1923', 'isopen': False, 'language': '{}', 'license_id': 'CC BY 4.0 Deed', 'license_title': 'Attribution 4.0 International', 'license_url': 'https://creativecommons.org/licenses/by/4.0/legalcode', 'maintainer': 'Institute of Physical Chemistry, RWTH Aachen University', 'maintainer_email': None, 'measurement_technique': '{}', 'metadata_created': '2024-06-01T08:55:09.766964', 'metadata_modified': '2024-06-01T08:55:09.766968', 'name': '10-22000-1923', 'notes': 'This dataset contains the data on which the publication "Interfacial rheology of polyelectrolyte microgel monolayers: correlation between mechanical properties and phase behavior at oil-water interfaces" is based. Files are structured according to the different methods used. All measurements are presented as individual .txt-files.', 'num_resources': 1, 'num_tags': 8, 'organization': {'id': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'name': 'radarchem', 'title': 'Radar4Chem ', 'type': 'repository', 'description': 'RADAR4Chem helps you publish your chemistry research data as easily as possible - without neglecting convenience, data security or legal aspects. ', 'image_url': 'logo-radar4-final_logo-radar4chem.svg', 'created': '2022-10-05T10:26:27.358751', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'private': False, 'related_study': '[]', 'state': 'active', 'title': 'Dataset belonging to the publication "Interfacial rheology of polyelectrolyte microgel monolayers: correlation between mechanical properties and phase behavior at oil-water interfaces"', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Schmidt, Maximilian Marcel'}, {'key': 'date', 'value': '2024-06-01T00:00:00'}, {'key': 'format', 'value': 'application/x-tar'}, {'key': 'identifier', 'value': 'https://dx.doi.org/10.22000/1923'}, {'key': 'metadata_modified', 'value': '2024-05-23T08:00:34'}, {'key': 'relation', 'value': '10.1122/8.0000714'}, {'key': 'rights', 'value': 'info:eu-repo/semantics/openAccess'}, {'key': 'set_spec', 'value': 'radar4chem'}, {'key': 'harvest_object_id', 'value': '97e4b701-5fc3-4c64-b12e-130bff834352'}, {'key': 'harvest_source_id', 'value': 'b4d8923e-d80b-4540-92d2-af05fd4bd33e'}, {'key': 'harvest_source_title', 'value': 'radar dublin core'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2024-06-01T08:55:09.768423', 'format': 'TAR', 'hash': '', 'id': '883c2570-2b86-49ca-b2d3-a31f55e2f787', 'last_modified': None, 'metadata_modified': '2024-06-01T08:55:09.752220', 'mimetype': None, 'mimetype_inner': None, 'name': 'Dataset belonging to the publication "Interfacial rheology of polyelectrolyte microgel monolayers: correlation between mechanical properties and phase behavior at oil-water interfaces"', 'package_id': '10-22000-1923', 'position': 0, 'resource_type': 'application/x-tar', 'size': None, 'state': 'active', 'url': 'https://dx.doi.org/10.22000/1923', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dataset', 'id': 'd6be89fd-9eb9-45f6-a83d-b0ed19d64e64', 'name': 'dataset', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'interfacial-rheology', 'id': '0210d7fd-4db3-4f43-8d3a-7776281e5253', 'name': 'interfacial-rheology', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mechanical-properties', 'id': 'daf35312-7a21-4b7e-8fe8-446f1b9c9304', 'name': 'mechanical-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'microgels', 'id': '97769a81-2fca-49f6-9d52-46b71c80228a', 'name': 'microgels', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'monolayers', 'id': '168e75d2-c5a8-428d-8298-c3414209bb2c', 'name': 'monolayers', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'two-dimensional-phase-behavior', 'id': 'd2c3e9fd-6abb-42f6-9997-835e8a7b9e3b', 'name': 'two-dimensional-phase-behavior', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Nevolianis, Thomas, Scotti, Andrea, Petrunin, Alexander, Richtering, Walter, Leonhard, Kai', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': '10-22000-857', 'isopen': False, 'license_title': None, 'maintainer': 'LTT - RWTH Aachen University', 'maintainer_email': None, 'metadata_created': '2023-04-04T08:46:48.149578', 'metadata_modified': '2023-11-19T03:15:11.993913', 'name': '10-22000-857', 'notes': 'All optimized molecular geometries and multi-angle dynamic light scattering measurements.', 'num_resources': 1, 'num_tags': 3, 'organization': {'id': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'name': 'radarchem', 'title': 'Radar4Chem ', 'type': 'repository', 'description': 'RADAR4Chem helps you publish your chemistry research data as easily as possible - without neglecting convenience, data security or legal aspects. ', 'image_url': 'logo-radar4-final_logo-radar4chem.svg', 'created': '2022-10-05T10:26:27.358751', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'private': False, 'related_study': [], 'state': 'active', 'title': 'Data belonging to the publication "Understanding the Monomer Deuteration Effect on the Transition Temperature of poly(N-isopropylacrylamide) Microgels in H2O"', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Nevolianis, Thomas'}, {'key': 'date', 'value': '2023-11-19T00:00:00'}, {'key': 'format', 'value': 'application/x-tar'}, {'key': 'identifier', 'value': 'https://dx.doi.org/10.22000/857'}, {'key': 'metadata_modified', 'value': '2023-11-15T14:36:25'}, {'key': 'relation', 'value': '10.1039/D2PY01511K'}, {'key': 'rights', 'value': 'info:eu-repo/semantics/openAccess'}, {'key': 'set_spec', 'value': 'radar4chem'}, {'key': 'harvest_object_id', 'value': 'aa6a082c-d6b1-4bab-9972-428b629a9c92'}, {'key': 'harvest_source_id', 'value': 'b4d8923e-d80b-4540-92d2-af05fd4bd33e'}, {'key': 'harvest_source_title', 'value': 'radar dublin core'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-11-19T03:15:12.006294', 'format': 'TAR', 'hash': '', 'id': '06998e64-7e26-45fc-ac41-1db1b985e582', 'last_modified': None, 'metadata_modified': '2023-11-19T03:15:11.996558', 'mimetype': None, 'mimetype_inner': None, 'name': 'Data belonging to the publication "Understanding the Monomer Deuteration Effect on the Transition Temperature of poly(N-isopropylacrylamide) Microgels in H2O"', 'package_id': '10-22000-857', 'position': 0, 'resource_type': 'application/x-tar', 'size': None, 'state': 'active', 'url': 'https://dx.doi.org/10.22000/857', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dataset', 'id': 'd6be89fd-9eb9-45f6-a83d-b0ed19d64e64', 'name': 'dataset', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Nevolianis, Thomas, Baumann, Matthias, Viswanathan, Narasimhan, Kopp, Wassja A., Leonhard, Kai', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': '10-22000-883', 'isopen': False, 'license_title': None, 'maintainer': 'LTT - RWTH Aachen University', 'maintainer_email': None, 'metadata_created': '2023-04-04T08:46:50.658096', 'metadata_modified': '2023-11-19T03:15:11.729514', 'name': '10-22000-883', 'notes': 'Optimized geometries of the charged and neutral solutes as well as all the numerical values of gas phase acidities, solvation free energies, and pKa values', 'num_resources': 1, 'num_tags': 3, 'organization': {'id': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'name': 'radarchem', 'title': 'Radar4Chem ', 'type': 'repository', 'description': 'RADAR4Chem helps you publish your chemistry research data as easily as possible - without neglecting convenience, data security or legal aspects. ', 'image_url': 'logo-radar4-final_logo-radar4chem.svg', 'created': '2022-10-05T10:26:27.358751', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'private': False, 'related_study': [], 'state': 'active', 'title': 'Data belonging to the publication "DISSOLVE: Database of ionic solutes’ solvation free energies"', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Nevolianis, Thomas'}, {'key': 'date', 'value': '2023-11-19T00:00:00'}, {'key': 'format', 'value': 'application/x-tar'}, {'key': 'identifier', 'value': 'https://dx.doi.org/10.22000/883'}, {'key': 'metadata_modified', 'value': '2023-11-15T14:36:24'}, {'key': 'relation', 'value': '10.1016/j.fluid.2023.113801'}, {'key': 'rights', 'value': 'info:eu-repo/semantics/openAccess'}, {'key': 'set_spec', 'value': 'radar4chem'}, {'key': 'harvest_object_id', 'value': 'f64adec3-461a-4598-b412-e316e06ec771'}, {'key': 'harvest_source_id', 'value': 'b4d8923e-d80b-4540-92d2-af05fd4bd33e'}, {'key': 'harvest_source_title', 'value': 'radar dublin core'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-11-19T03:15:11.741171', 'format': 'TAR', 'hash': '', 'id': '86d4bb65-76bc-44d0-b578-4f5e685c1dde', 'last_modified': None, 'metadata_modified': '2023-11-19T03:15:11.732085', 'mimetype': None, 'mimetype_inner': None, 'name': 'Data belonging to the publication "DISSOLVE: Database of ionic solutes’ solvation free energies"', 'package_id': '10-22000-883', 'position': 0, 'resource_type': 'application/x-tar', 'size': None, 'state': 'active', 'url': 'https://dx.doi.org/10.22000/883', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dataset', 'id': 'd6be89fd-9eb9-45f6-a83d-b0ed19d64e64', 'name': 'dataset', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Petrunin, Alexander V. , Schmidt, Maximilian M., Schweins, Ralf, Houston, Judith E. , Scotti, Andrea', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': '10-22000-804', 'isopen': False, 'license_title': None, 'maintainer': 'IPC - RWTH Aachen University', 'maintainer_email': None, 'metadata_created': '2023-05-30T11:31:21.677349', 'metadata_modified': '2023-11-19T03:15:11.449432', 'name': '10-22000-804', 'notes': 'Small-angle X-ray scattering (SAXS)', 'num_resources': 1, 'num_tags': 8, 'organization': {'id': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'name': 'radarchem', 'title': 'Radar4Chem ', 'type': 'repository', 'description': 'RADAR4Chem helps you publish your chemistry research data as easily as possible - without neglecting convenience, data security or legal aspects. ', 'image_url': 'logo-radar4-final_logo-radar4chem.svg', 'created': '2022-10-05T10:26:27.358751', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'private': False, 'related_study': [], 'state': 'active', 'title': 'Analytical data belonging to the publication: "Self-healing of charged nanogels in neutral and charged environments"', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Petrunin, Alexander V. '}, {'key': 'date', 'value': '2023-11-19T00:00:00'}, {'key': 'format', 'value': 'application/x-tar'}, {'key': 'identifier', 'value': 'https://dx.doi.org/10.22000/804'}, {'key': 'metadata_modified', 'value': '2023-11-15T14:36:24'}, {'key': 'relation', 'value': '10.1021/acs.langmuir.2c03054'}, {'key': 'rights', 'value': 'info:eu-repo/semantics/openAccess'}, {'key': 'set_spec', 'value': 'radar4chem'}, {'key': 'harvest_object_id', 'value': '2484a3cb-44a3-4c5d-bdd1-2422b36c2e1b'}, {'key': 'harvest_source_id', 'value': 'b4d8923e-d80b-4540-92d2-af05fd4bd33e'}, {'key': 'harvest_source_title', 'value': 'radar dublin core'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-11-19T03:15:11.465741', 'format': 'TAR', 'hash': '', 'id': 'fc3bd39e-4d81-4b57-bc5a-3b0cbfcb0a49', 'last_modified': None, 'metadata_modified': '2023-11-19T03:15:11.452059', 'mimetype': None, 'mimetype_inner': None, 'name': 'Analytical data belonging to the publication: "Self-healing of charged nanogels in neutral and charged environments"', 'package_id': '10-22000-804', 'position': 0, 'resource_type': 'application/x-tar', 'size': None, 'state': 'active', 'url': 'https://dx.doi.org/10.22000/804', 'url_type': None}], 'tags': [{'display_name': 'chemical-structure', 'id': 'd8f1c7b9-025a-4673-8d3a-1417aded8336', 'name': 'chemical-structure', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dataset', 'id': 'd6be89fd-9eb9-45f6-a83d-b0ed19d64e64', 'name': 'dataset', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gels', 'id': '9db39aa4-9299-4613-9ce0-cb7f06325371', 'name': 'gels', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'hydrogenation', 'id': '6149c51f-e687-4998-8892-23a600186810', 'name': 'hydrogenation', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'suspensions', 'id': '8067a362-da86-40ec-946d-7505e0728bc5', 'name': 'suspensions', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'x-ray-scattering', 'id': '76745639-fc7e-4785-a44c-4b8db2f78f68', 'name': 'x-ray-scattering', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Heck, Joshua, Metz, Fabian, Buchenau, Sören, Teubner, Melissa, Grimm-Lebsanft, Benjamin, Spaniol, Thomas Paul, Hoffmann, Alexander, Rübhausen, Michael, Herres-Pawlis, Sonja', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': '10-22000-613', 'isopen': False, 'language': 'eng', 'license_title': None, 'maintainer': 'RWTH Aachen University', 'maintainer_email': None, 'metadata_created': '2022-10-05T08:31:38.383264', 'metadata_modified': '2023-11-19T03:15:04.388274', 'name': '10-22000-613', 'notes': 'The manuscript deals with the influence of different substituents of guanidine quinoline ligands on the electron transfer properties of the corresponding Cu(I) and Cu(II) complexes. The complexes were characterized with various methods but for further explanations of the substituents’ influences DFT calculations were essential. Correlations between the experimental and theoretical results revealed a deeper understanding of the properties of the copper complexes depending on the ligands’ substituents.', 'num_resources': 1, 'num_tags': 4, 'organization': {'id': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'name': 'radarchem', 'title': 'Radar4Chem ', 'type': 'repository', 'description': 'RADAR4Chem helps you publish your chemistry research data as easily as possible - without neglecting convenience, data security or legal aspects. ', 'image_url': 'logo-radar4-final_logo-radar4chem.svg', 'created': '2022-10-05T10:26:27.358751', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '2c5ffe45-2787-4598-89db-0cacf2f9584b', 'private': False, 'related_study': [], 'state': 'active', 'title': 'DFT Optimised coordinates to the publication "Manipulating Electron Transfer − The Influence of Substituents on Novel Copper Guanidine Quinoline Complexes"', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Heck, Joshua'}, {'key': 'date', 'value': '2022-11-19T00:00:00'}, {'key': 'format', 'value': 'application/x-tar'}, {'key': 'identifier', 'value': 'https://dx.doi.org/10.22000/613'}, {'key': 'metadata_modified', 'value': '2023-11-15T14:36:19'}, {'key': 'relation', 'value': '10.1039/d2sc02910c'}, {'key': 'rights', 'value': 'info:eu-repo/semantics/openAccess'}, {'key': 'set_spec', 'value': 'radar4chem'}, {'key': 'harvest_object_id', 'value': '79d1322d-2d74-408f-b088-f2aa57e44c3c'}, {'key': 'harvest_source_id', 'value': 'b4d8923e-d80b-4540-92d2-af05fd4bd33e'}, {'key': 'harvest_source_title', 'value': 'radar dublin core'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-11-19T03:15:04.404664', 'format': 'TAR', 'hash': '', 'id': 'bbaf209e-858e-4b42-b327-724f2e70bc41', 'last_modified': None, 'metadata_modified': '2023-11-19T03:15:04.391042', 'mimetype': None, 'mimetype_inner': None, 'name': 'DFT Optimised coordinates to the publication "Manipulating Electron Transfer − The Influence of Substituents on Novel Copper Guanidine Quinoline Complexes"', 'package_id': '10-22000-613', 'position': 0, 'resource_type': 'application/x-tar', 'size': None, 'state': 'active', 'url': 'https://dx.doi.org/10.22000/613', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dataset', 'id': 'd6be89fd-9eb9-45f6-a83d-b0ed19d64e64', 'name': 'dataset', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dft-optimised-coordinates', 'id': '4a99fff7-0dcc-42e3-bf6a-fed74e6933d1', 'name': 'dft-optimised-coordinates', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Dietrich, Clarissa, Collings, Peter J., Sottmann, Thomas, Rudquist, Per, Giesselmann, Frank', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-746', 'isopen': False, 'language': 'English', 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:21.404738', 'metadata_modified': '2023-05-08T19:14:21.404744', 'name': 'doi-10-18419-darus-746', 'notes': 'Depolarized dynamic light scattering (DDLS) data, fit routine & fitting results', 'num_resources': 1, 'num_tags': 8, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Data from "Extremely Small Twist Elastic Constants in Lyotropic Nematic Liquid Crystals"', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Giesselmann, Frank'}, {'key': 'creator', 'value': 'Dietrich, Clarissa'}, {'key': 'date', 'value': '2020-10-01T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-746'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:03'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '40c93ac6-c256-4bc2-8fec-b1049c774f9c'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:21.413652', 'format': 'HTML', 'hash': '', 'id': 'a6383ffc-7699-439d-a2aa-2b0d438934c6', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:21.393478', 'mimetype': None, 'mimetype_inner': None, 'name': 'Data from "Extremely Small Twist Elastic Constants in Lyotropic Nematic Liquid Crystals"', 'package_id': 'doi-10-18419-darus-746', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-746', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'dynamic-light-scattering', 'id': '2ebf7a50-4280-4665-bf95-cb2d429c30ed', 'name': 'dynamic-light-scattering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'experimental-data', 'id': '2468cb76-4757-4ec7-be40-8da1b05b5f1c', 'name': 'experimental-data', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-crystals', 'id': '12cef04b-0f3c-4c24-8d63-a698bcf07b06', 'name': 'liquid-crystals', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'lyotropic-phases', 'id': '8a159722-4bfa-47e4-97a2-b1a89aff078a', 'name': 'lyotropic-phases', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'surfactants', 'id': 'ee1c583b-6735-4491-b64f-ab8d7c4922c0', 'name': 'surfactants', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'viscoelastic-properties', 'id': '63ae8ae5-795c-4dc6-9a55-ebc5cf898057', 'name': 'viscoelastic-properties', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gravelle, Simon, Beyer, David, Brito, Mariano E., Schlaich, Alexander, Holm, Christian', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3313', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:11.401243', 'metadata_modified': '2023-05-08T19:14:11.401249', 'name': 'doi-10-18419-darus-3313', 'notes': 'Simulations and data analysis scripts for the publication "Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations". \nThe dataset contains two types of simulation scripts: all-atom simulation (GROMACS) and coarse-grained simulations (ESPRESSO). In both cases, the system is a polymer PEG bulk system. \nSee the <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=180668">README file</a> for details and instructions.', 'num_resources': 1, 'num_tags': 5, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Scripts for "Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations"', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Gravelle, Simon'}, {'key': 'creator', 'value': 'Gravelle, Simon'}, {'key': 'date', 'value': '2023-03-13T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3313'}, {'key': 'metadata_modified', 'value': '2023-03-14T01:00:04'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '2f03e55e-e433-4337-90a3-36952864183e'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:11.408907', 'format': 'HTML', 'hash': '', 'id': 'e4602d1a-e5b1-4566-a541-c4b751e7981c', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:11.390353', 'mimetype': None, 'mimetype_inner': None, 'name': 'Scripts for "Assessing the validity of NMR relaxation rates obtained from coarse-grained simulations"', 'package_id': 'doi-10-18419-darus-3313', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3313', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'espresso', 'id': '36617720-1516-47cc-9e47-0e4b0f281030', 'name': 'espresso', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gromacs', 'id': '89f9c630-d2ac-459e-8624-7dbdd542d09c', 'name': 'gromacs', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'molecular-dynamics-simulation', 'id': '0040c50a-44c0-4113-b945-716272c88419', 'name': 'molecular-dynamics-simulation', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Zaverkin, Viktor, Holzmüller, David, Bonfirraro, Luca, Kästner, Johannes', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3299', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:10.521291', 'metadata_modified': '2023-05-08T19:14:10.521296', 'name': 'doi-10-18419-darus-3299', 'notes': 'Pre-trained and fine-tuned ANI models using the Gaussian Moments Neural Network (GM-NN) approach. Code for GM-NN implemented within the Tensorflow framework, including the respective documentation and tutorials, can be found <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>. \n\nThe data represents TensorFlow v2 checkpoints and stores the metadata for the checkpoint and parameters for the model. Checkpoints can be read by the source code provided <a href="https://gitlab.com/zaverkin_v/gmnn">on GitLab</a>. A detailed description for reproducing the results and employing pre-trained and fine-tuned models during a simulation is provided <a href="https://zaverkin_v.gitlab.io/gmnn/tutorials/transfer_learning.html">in the GM-NN Documentation</a>.', 'num_resources': 1, 'num_tags': 11, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Zaverkin, Viktor'}, {'key': 'creator', 'value': 'Zaverkin, Viktor'}, {'key': 'date', 'value': '2023-02-20T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3299'}, {'key': 'metadata_modified', 'value': '2023-02-21T01:00:06'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '1e3d9f3c-6d7b-42df-904c-5fd345dece78'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:10.537321', 'format': 'HTML', 'hash': '', 'id': 'b0bddd32-f061-410a-bc09-9bac28fb08c4', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:10.507649', 'mimetype': None, 'mimetype_inner': None, 'name': 'Pre-trained and fine-tuned ANI models for: Transfer learning for chemically accurate interatomic neural network potentials', 'package_id': 'doi-10-18419-darus-3299', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3299', 'url_type': None}], 'tags': [{'display_name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'id': '0559f28e-5e33-426d-a5e8-5e615e15a542', 'name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'atomistic-machine-learning', 'id': '2240e87f-ab38-4e03-b8ea-1e006b9268d3', 'name': 'atomistic-machine-learning', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computer-and-information-science', 'id': '75b28b6d-af69-4c24-9c9e-451d429aad9b', 'name': 'computer-and-information-science', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'coupled-cluster-cc-ansatz', 'id': '6a28d72d-d650-42ca-9425-259d86fd29a3', 'name': 'coupled-cluster-cc-ansatz', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'density-functional-theory-dft', 'id': '4c3b55d5-fe56-4a5c-92c9-bb32e2f961aa', 'name': 'density-functional-theory-dft', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moment-neural-network-gm-nn', 'id': 'cfb65332-2cf0-4494-a29d-39bb64315076', 'name': 'gaussian-moment-neural-network-gm-nn', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gaussian-moments', 'id': 'a6446777-ff08-4690-b980-92eacae73188', 'name': 'gaussian-moments', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'potential-energy-surface', 'id': 'a312c19b-5ff6-44a5-ab5b-b2e6c6e29690', 'name': 'potential-energy-surface', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transfer-learning', 'id': '442d604b-226d-4279-a05d-dcdd99e1ec7c', 'name': 'transfer-learning', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gravelle, Simon, Holm, Christian, Schlaich, Alexander', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3180', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:04.136953', 'metadata_modified': '2023-05-08T19:14:04.136959', 'name': 'doi-10-18419-darus-3180', 'notes': 'GROMACS molecular simulation input files for slit nanopores made of NaCl and Na2SO4 solid walls, and filled with respectively NaCl and Na2SO4 solutions. Initial configuration with a given salt concentration can be generated using the Python script ConfigurationGenerator.py, and successive GROMACS runs can be performed by running the runall.sh Bash script. See the <a href="https://darus.uni-stuttgart.de/file.xhtml?fileId=198713">README.md</a> file.', 'num_resources': 1, 'num_tags': 7, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Molecular simulation scripts for slit nanopores', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Gravelle, Simon'}, {'key': 'creator', 'value': 'Gravelle, Simon'}, {'key': 'date', 'value': '2023-03-09T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3180'}, {'key': 'metadata_modified', 'value': '2023-03-10T01:00:06'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': 'bfa5cf13-f7a9-44b5-b9d5-eeceb194eaba'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:04.150618', 'format': 'HTML', 'hash': '', 'id': 'a6d6040a-030a-450a-a25a-320158d3bb8d', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:04.126132', 'mimetype': None, 'mimetype_inner': None, 'name': 'Molecular simulation scripts for slit nanopores', 'package_id': 'doi-10-18419-darus-3180', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3180', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computer-and-information-science', 'id': '75b28b6d-af69-4c24-9c9e-451d429aad9b', 'name': 'computer-and-information-science', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gromacs', 'id': '89f9c630-d2ac-459e-8624-7dbdd542d09c', 'name': 'gromacs', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'molecular-dynamics-simulation', 'id': '0040c50a-44c0-4113-b945-716272c88419', 'name': 'molecular-dynamics-simulation', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'sodium-chloride', 'id': '493d4ff7-9454-41d8-9611-5d115f2e3cdf', 'name': 'sodium-chloride', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'sodium-sulfate', 'id': '362f8323-c93c-47d8-a1ed-188d5e3cd6be', 'name': 'sodium-sulfate', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gravelle, Simon, Holm, Christian, Schlaich, Alexander', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3179', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:04.062901', 'metadata_modified': '2023-05-08T19:14:04.062907', 'name': 'doi-10-18419-darus-3179', 'notes': 'GROMACS molecular simulation input files for bulk solutions of NaCl and Na2SO4. Initial configuration with different salt concentration can be generated using the Python script ConfigurationGenerator.py, and successive GROMACS runs can be performed by running the runall.sh Bash script.', 'num_resources': 1, 'num_tags': 7, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Molecular simulation scripts for bulk solutions', 'type': 'dataset', 'extras': [{'key': 'contributor', 'value': 'Gravelle, Simon'}, {'key': 'creator', 'value': 'Gravelle, Simon'}, {'key': 'date', 'value': '2023-03-08T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3179'}, {'key': 'metadata_modified', 'value': '2023-03-09T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '5c4a3f69-04a6-4ee7-8ecf-85ee4cf55520'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:04.064516', 'format': 'HTML', 'hash': '', 'id': '176a5862-f9ce-4958-b8d9-e4020e11f408', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:04.052527', 'mimetype': None, 'mimetype_inner': None, 'name': 'Molecular simulation scripts for bulk solutions', 'package_id': 'doi-10-18419-darus-3179', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3179', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'computer-and-information-science', 'id': '75b28b6d-af69-4c24-9c9e-451d429aad9b', 'name': 'computer-and-information-science', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'gromacs', 'id': '89f9c630-d2ac-459e-8624-7dbdd542d09c', 'name': 'gromacs', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'molecular-dynamics-simulation', 'id': '0040c50a-44c0-4113-b945-716272c88419', 'name': 'molecular-dynamics-simulation', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'sodium-chloride', 'id': '493d4ff7-9454-41d8-9611-5d115f2e3cdf', 'name': 'sodium-chloride', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'sodium-sulfate', 'id': '362f8323-c93c-47d8-a1ed-188d5e3cd6be', 'name': 'sodium-sulfate', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3121', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:02.400027', 'metadata_modified': '2023-05-08T19:14:02.400034', 'name': 'doi-10-18419-darus-3121', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Viscosities of experimental aqueous glycerol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3121'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '55485897-9cf6-4aa8-8dc6-7e41da13d5f1'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:02.413805', 'format': 'HTML', 'hash': '', 'id': 'c75e3088-b106-4fc4-83dd-91e7dd720225', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:02.386029', 'mimetype': None, 'mimetype_inner': None, 'name': 'Viscosities of experimental aqueous glycerol mixtures', 'package_id': 'doi-10-18419-darus-3121', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3121', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml', 'id': 'c831467c-748e-4806-8359-ff9216511379', 'name': 'thermoml', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3120', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:02.314569', 'metadata_modified': '2023-05-08T19:14:02.314575', 'name': 'doi-10-18419-darus-3120', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Viscosities of experimental aqueous methanol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3120'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': 'e7536efe-3262-4d4f-b2e8-a6e453a4fab8'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:02.324898', 'format': 'HTML', 'hash': '', 'id': '71ba77db-2cba-4137-9564-8c616df766e0', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:02.301278', 'mimetype': None, 'mimetype_inner': None, 'name': 'Viscosities of experimental aqueous methanol mixtures', 'package_id': 'doi-10-18419-darus-3120', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3120', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml', 'id': 'c831467c-748e-4806-8359-ff9216511379', 'name': 'thermoml', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3119', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:01.879019', 'metadata_modified': '2023-05-08T19:14:01.879026', 'name': 'doi-10-18419-darus-3119', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Self-diffusion coefficients of experimental aqueous glycerol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3119'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '2577ed56-9046-4913-b192-235381fc90f0'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:01.895357', 'format': 'HTML', 'hash': '', 'id': '766cd947-4862-462f-80da-cec841f41d5c', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:01.864641', 'mimetype': None, 'mimetype_inner': None, 'name': 'Self-diffusion coefficients of experimental aqueous glycerol mixtures', 'package_id': 'doi-10-18419-darus-3119', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3119', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml-file', 'id': '432fa2a1-191f-42e0-bb91-c108cbb0451d', 'name': 'thermoml-file', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3118', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:01.680169', 'metadata_modified': '2023-05-08T19:14:01.680176', 'name': 'doi-10-18419-darus-3118', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Tracer-diffusion coefficients of experimental aqueous methanol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3118'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '1900a390-cd9d-4708-a299-6bbfc5401b4b'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:01.704491', 'format': 'HTML', 'hash': '', 'id': 'b1177e75-2fc8-416f-af7b-499cb1c448ba', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:01.663101', 'mimetype': None, 'mimetype_inner': None, 'name': 'Tracer-diffusion coefficients of experimental aqueous methanol mixtures', 'package_id': 'doi-10-18419-darus-3118', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3118', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml-file', 'id': '432fa2a1-191f-42e0-bb91-c108cbb0451d', 'name': 'thermoml-file', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3116', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:01.213700', 'metadata_modified': '2023-05-08T19:14:01.213705', 'name': 'doi-10-18419-darus-3116', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Densities of experimental aqueous methanol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3116'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '5b7f0b8a-46a3-4cc8-8144-3f6a28dd862b'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:01.241160', 'format': 'HTML', 'hash': '', 'id': '293611c4-d146-4659-91fa-bf25e02482dd', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:01.195221', 'mimetype': None, 'mimetype_inner': None, 'name': 'Densities of experimental aqueous methanol mixtures', 'package_id': 'doi-10-18419-darus-3116', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3116', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml-file', 'id': '432fa2a1-191f-42e0-bb91-c108cbb0451d', 'name': 'thermoml-file', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3117', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:01.039061', 'metadata_modified': '2023-05-08T19:14:01.039065', 'name': 'doi-10-18419-darus-3117', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Densities of experimental aqueous glycerol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3117'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': '7b0989b5-4da8-428d-b139-d85a5dee3c8d'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:01.058844', 'format': 'HTML', 'hash': '', 'id': '203d72d7-f143-4347-a392-7105dc87ae2a', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:01.026102', 'mimetype': None, 'mimetype_inner': None, 'name': 'Densities of experimental aqueous glycerol mixtures', 'package_id': 'doi-10-18419-darus-3117', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3117', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml-file', 'id': '432fa2a1-191f-42e0-bb91-c108cbb0451d', 'name': 'thermoml-file', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3115', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:00.514067', 'metadata_modified': '2023-05-08T19:14:00.514071', 'name': 'doi-10-18419-darus-3115', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Self-diffusion coefficients of simulated aqueous glycerol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3115'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': 'f69d91a1-87e4-42e2-bcb5-e9883e1a6eb7'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:00.525694', 'format': 'HTML', 'hash': '', 'id': '2c836728-2c9b-46ac-9678-f3972594f5ec', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:00.500626', 'mimetype': None, 'mimetype_inner': None, 'name': 'Self-diffusion coefficients of simulated aqueous glycerol mixtures', 'package_id': 'doi-10-18419-darus-3115', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3115', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml', 'id': 'c831467c-748e-4806-8359-ff9216511379', 'name': 'thermoml', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3114', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:14:00.321828', 'metadata_modified': '2023-05-08T19:14:00.321834', 'name': 'doi-10-18419-darus-3114', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Self-diffusion coefficients of simulated aqueous methanol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3114'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': 'e935fb8d-7472-4b8a-88e0-7442f8441dc1'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:14:00.323927', 'format': 'HTML', 'hash': '', 'id': '9bef3f2b-efd6-4039-b73a-c924342ed03c', 'last_modified': None, 'metadata_modified': '2023-05-08T19:14:00.297216', 'mimetype': None, 'mimetype_inner': None, 'name': 'Self-diffusion coefficients of simulated aqueous methanol mixtures', 'package_id': 'doi-10-18419-darus-3114', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3114', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml', 'id': 'c831467c-748e-4806-8359-ff9216511379', 'name': 'thermoml', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}, {'author': 'Gültig, Matthias, Range, Jan Peter, Schmitz, Benjamin, Pleiss, Jürgen', 'author_email': None, 'creator_user_id': '1be646ae-ab26-47b8-8835-e4b27f11961e', 'id': 'doi-10-18419-darus-3113', 'isopen': False, 'license_id': '', 'license_title': '', 'maintainer': 'DaRUS', 'maintainer_email': None, 'metadata_created': '2023-05-08T19:13:59.936551', 'metadata_modified': '2023-05-08T19:13:59.936558', 'name': 'doi-10-18419-darus-3113', 'notes': 'In order to make thermophysical properties of complex liquid mixtures available to a comprehensive analysis, we developed a data management and analysis platform based on the standard data exchange format ThermoML. The practicability of integrating thermophysical data from experiment and simulation was demonstrated for two binary mixtures, methanol-water and glycerol-water, by systematically studying the dependence of densities and diffusion coefficients from water content over the whole composition range and temperatures between 278.15 and 318.15 K. Experimental data was extracted manually from literature. The same parameter space was explored by comprehensive molecular dynamics simulations, whose results were directly transferred to the analysis platform. The benefit of data integration was illustrated by assessing the transferability of the force fields, which had been developed for pure compounds to different compositions and temperatures, and by analyzing the excess mixing properties as a measure of non-ideality of methanol-water and glycerol-water mixtures. The core of the data management and analysis platform is the newly developed Python library pyThermoML, which represents metadata, the parameters and the experimentally determined or simulated properties as Python data classes. \n<br></br>\nThe feasibility of a seamless data flow from data acquisition to a comprehensive data analysis was demonstrated. <a href="https://github.com/FAIRChemistry/pyThermoML">PyThermoML</a> enables interoperability and reusability of the datasets. The publication of ThermoML documents on the Dataverse installation of the University of Stuttgart (DaRUS) makes thermophysical data findable and accessible, and thus FAIR.\n<br></br>\nThe usage of pyThermoML is demonstrated in the following <a href="https://github.com/FAIRChemistry/pyThermoML/blob/master/pyThermoML_example_workflow/templateThermoML.ipynb">example workflow</a> and can be utilized to read the given ThermoML file.', 'num_resources': 1, 'num_tags': 10, 'organization': {'id': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'name': 'darus', 'title': 'DaRUS', 'type': 'repository', 'description': 'Chemistry collection from DaRUS, the data repository of the University of Stuttgart.', 'image_url': 'logoDarusKreis.png', 'created': '2023-05-03T09:01:04.791551', 'is_organization': True, 'approval_status': 'approved', 'state': 'active'}, 'owner_org': '9a7d2a53-21f6-412a-afb9-a15122df0640', 'private': False, 'related_molecule': [], 'state': 'active', 'title': 'Densities of simulated aqueous glycerol mixtures', 'type': 'dataset', 'extras': [{'key': 'creator', 'value': 'Gültig, Matthias'}, {'key': 'date', 'value': '2022-10-28T00:00:00'}, {'key': 'identifier', 'value': 'https://doi.org/10.18419/darus-3113'}, {'key': 'metadata_modified', 'value': '2022-11-29T01:00:05'}, {'key': 'set_spec', 'value': 'all'}, {'key': 'harvest_object_id', 'value': 'a708588e-c6a1-42b9-9940-7baed1996ba5'}, {'key': 'harvest_source_id', 'value': '8ba5ef26-d024-46cd-8099-94f1e74e7a36'}, {'key': 'harvest_source_title', 'value': 'Darus Test Harvest'}], 'resources': [{'cache_last_updated': None, 'cache_url': None, 'created': '2023-05-08T19:13:59.952325', 'format': 'HTML', 'hash': '', 'id': '26ae5db8-3a08-4e05-8554-5b69f997544a', 'last_modified': None, 'metadata_modified': '2023-05-08T19:13:59.919894', 'mimetype': None, 'mimetype_inner': None, 'name': 'Densities of simulated aqueous glycerol mixtures', 'package_id': 'doi-10-18419-darus-3113', 'position': 0, 'resource_type': 'HTML', 'size': None, 'state': 'active', 'url': 'https://doi.org/10.18419/darus-3113', 'url_type': None}], 'tags': [{'display_name': 'chemistry', 'id': '20e4e978-2a22-4286-a18b-4ae22d1ffca1', 'name': 'chemistry', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'engineering', 'id': '3ff6cbc9-08ad-4fd1-aa1e-6676db9d1e1c', 'name': 'engineering', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'excess-properties', 'id': '4f0d3070-54f9-4e54-aa93-2ce8eefb5511', 'name': 'excess-properties', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair', 'id': 'f478468d-4177-45bd-910b-eb1eeec855fd', 'name': 'fair', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'fair-data-principles', 'id': '70904371-5f99-455f-af39-2ff1d5b1ea6b', 'name': 'fair-data-principles', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'liquid-mixtures', 'id': 'c6f22099-46e7-4e66-9cf9-ded2359d790f', 'name': 'liquid-mixtures', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'mathematical-sciences', 'id': 'e46bf35a-29e9-4b40-a5c8-db6a64e96d7d', 'name': 'mathematical-sciences', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'physics', 'id': '820fb04d-8f9c-45ca-9a54-9054d91e527b', 'name': 'physics', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'thermoml', 'id': 'c831467c-748e-4806-8359-ff9216511379', 'name': 'thermoml', 'state': 'active', 'vocabulary_id': None}, {'display_name': 'transferability-of-force-fields', 'id': '0e4eb12c-951b-43dd-b6df-d7268d534adc', 'name': 'transferability-of-force-fields', 'state': 'active', 'vocabulary_id': None}], 'groups': [], 'relationships_as_subject': [], 'relationships_as_object': []}], 'sort': 'score desc, metadata_modified desc', 'search_facets': {'organization': {'title': 'organization', 'items': [{'name': 'radarchem', 'display_name': 'Radar4Chem ', 'count': 6}, {'name': 'darus', 'display_name': 'DaRUS', 'count': 36}]}, 'measurement_technique': {'title': 'measurement_technique', 'items': [{'name': '{}', 'display_name': '{}', 'count': 1}, {'name': '{"CoSAXS beamline at the 3 GeV ring of the MAX-IV Laboratory (Lund, Sweden)","D11 SANS beamline at ILL (Grenoble, France)","Multi-angle DLS: ALV/CGS-3 Compact Goniometer System with an ALV/LSE 5004 Tau Digital Correlator","DHR-3 rheometer (TA instruments)","Static Light Scattering instrument (SLS-Systemtechnik GmbH)","Ubbelohde viscometer 0c (SI Analytics) and Lauda iVisc measuring stand",Instrument,Instrument,Instrument,Instrument,Instrument,Instrument}', 'display_name': '{"CoSAXS beamline at the 3 GeV ring of the MAX-IV Laboratory (Lund, Sweden)","D11 SANS beamline at ILL (Grenoble, France)","Multi-angle DLS: ALV/CGS-3 Compact Goniometer System with an ALV/LSE 5004 Tau Digital Correlator","DHR-3 rheometer (TA instruments)","Static Light Scattering instrument (SLS-Systemtechnik GmbH)","Ubbelohde viscometer 0c (SI Analytics) and Lauda iVisc measuring stand",Instrument,Instrument,Instrument,Instrument,Instrument,Instrument}', 'count': 1}]}, 'tags': {'title': 'tags', 'items': [{'name': 'x-ray-scattering', 'display_name': 'x-ray-scattering', 'count': 3}, {'name': 'water', 'display_name': 'water', 'count': 3}, {'name': 'vmd-visual-molecular-dynamics', 'display_name': 'vmd-visual-molecular-dynamics', 'count': 2}, {'name': 'transferability-of-force-fields', 'display_name': 'transferability-of-force-fields', 'count': 10}, {'name': 'thermoml-file', 'display_name': 'thermoml-file', 'count': 4}, {'name': 'thermoml', 'display_name': 'thermoml', 'count': 6}, {'name': 'surfactants', 'display_name': 'surfactants', 'count': 3}, {'name': 'sodium-sulfate', 'display_name': 'sodium-sulfate', 'count': 2}, {'name': 'sodium-chloride', 'display_name': 'sodium-chloride', 'count': 5}, {'name': 'shape-memory-polymer', 'display_name': 'shape-memory-polymer', 'count': 2}, {'name': 'potential-energy-surface', 'display_name': 'potential-energy-surface', 'count': 2}, {'name': 'polyelectrolytes', 'display_name': 'polyelectrolytes', 'count': 2}, {'name': 'physics', 'display_name': 'physics', 'count': 42}, {'name': 'monte-carlo-method', 'display_name': 'monte-carlo-method', 'count': 2}, {'name': 'molecular-dynamics-simulation', 'display_name': 'molecular-dynamics-simulation', 'count': 12}, {'name': 'molecular-dynamics', 'display_name': 'molecular-dynamics', 'count': 2}, {'name': 'microgels', 'display_name': 'microgels', 'count': 2}, {'name': 'mathematical-sciences', 'display_name': 'mathematical-sciences', 'count': 10}, {'name': 'lyotropic-liquid-crystal', 'display_name': 'lyotropic-liquid-crystal', 'count': 2}, {'name': 'liquid-mixtures', 'display_name': 'liquid-mixtures', 'count': 10}, {'name': 'hydrogel', 'display_name': 'hydrogel', 'count': 2}, {'name': 'gromacs', 'display_name': 'gromacs', 'count': 6}, {'name': 'gaussian-moments', 'display_name': 'gaussian-moments', 'count': 2}, {'name': 'fair-data-principles', 'display_name': 'fair-data-principles', 'count': 10}, {'name': 'fair', 'display_name': 'fair', 'count': 10}, {'name': 'experimental-data', 'display_name': 'experimental-data', 'count': 2}, {'name': 'excess-properties', 'display_name': 'excess-properties', 'count': 10}, {'name': 'engineering', 'display_name': 'engineering', 'count': 16}, {'name': 'earth-and-environmental-sciences', 'display_name': 'earth-and-environmental-sciences', 'count': 3}, {'name': 'droplet-interface-bilayers', 'display_name': 'droplet-interface-bilayers', 'count': 1}, {'name': 'diffusion', 'display_name': 'diffusion', 'count': 1}, {'name': 'dft-optimised-coordinates', 'display_name': 'dft-optimised-coordinates', 'count': 1}, {'name': 'desorption', 'display_name': 'desorption', 'count': 1}, {'name': 'density-functional-theory-dft', 'display_name': 'density-functional-theory-dft', 'count': 1}, {'name': 'density-functional-theory', 'display_name': 'density-functional-theory', 'count': 1}, {'name': 'dataset', 'display_name': 'dataset', 'count': 6}, {'name': 'covalent-organic-framework', 'display_name': 'covalent-organic-framework', 'count': 1}, {'name': 'coupled-cluster-cc-ansatz', 'display_name': 'coupled-cluster-cc-ansatz', 'count': 1}, {'name': 'computer-simulation', 'display_name': 'computer-simulation', 'count': 2}, {'name': 'computer-and-information-science', 'display_name': 'computer-and-information-science', 'count': 11}, {'name': 'computational-chemistry', 'display_name': 'computational-chemistry', 'count': 1}, {'name': 'colloidal-crystals', 'display_name': 'colloidal-crystals', 'count': 1}, {'name': 'chemistry', 'display_name': 'chemistry', 'count': 42}, {'name': 'chemical-structure', 'display_name': 'chemical-structure', 'count': 1}, {'name': 'atomistic-machine-learning', 'display_name': 'atomistic-machine-learning', 'count': 2}, {'name': 'animl', 'display_name': 'animl', 'count': 1}, {'name': 'advection-reaction-diffusion', 'display_name': 'advection-reaction-diffusion', 'count': 1}, {'name': 'adsorption', 'display_name': 'adsorption', 'count': 3}, {'name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'display_name': 'accurate-neural-network-engine-for-molecular-energies-ani', 'count': 1}, {'name': 'absorption', 'display_name': 'absorption', 'count': 1}]}, 'license_id': {'title': 'license_id', 'items': [{'name': 'CC BY 4.0 Deed', 'display_name': 'Attribution 4.0 International', 'count': 2}, {'name': '', 'display_name': '', 'count': 36}]}}}, 'search_params': None} |